Design and fabrication of Ni nanowires having periodically hollow nanostructures.
نویسندگان
چکیده
We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.
منابع مشابه
Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires
Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time,...
متن کاملRegulated oxidation of nickel in multisegmented nickel-platinum nanowires: an entry to wavy nanopeapods.
Oxidation of solid metal nanoobjects is a versatile approach to generating hollow metal oxide nanostructures. The mechanism for the solid-to-hollow conversions has been attributed to the Kirkendall effect, which describes an unbalanced interdiffusion of a thermal diffusion couple. When a metal nanoobject is exposed to oxygen at elevated temperatures, the outward diffusion of the metal cations i...
متن کاملPeashell-like nanostructure--a new kind of one-dimensional nanostructure: the case of magnesium oxide.
A novel type of 1D nanostructure with characteristics between those of a solid nanowire and a hollow nanotube, i.e. a peashell-like nanostructure comprising a 1D wire with periodically embedded hollow nanobubbles, is presented for the first time; as an example, MgO peashell-like nanostructures exhibit extraordinary dielectric and magnetization properties.
متن کاملDesigned synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices
Cobalt oxides, such as Co3O4 and CoO, have received increased attention as potential anode materials for rechargeable lithium-ion batteries (LIBs) owing to their high theoretical capacity. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials for LIBs. In this review, we summarize recent development in the rati...
متن کاملFree-standing NiTi alloy nanowires fabricated by nanoskiving.
We report on free-standing NiTi alloy nanowires (120 nm × 75 nm) fabricated using a technique referred to as "nanoskiving", which complements conventional thin film sputter deposition with ultramicrotomy for thin sectioning. To date, the technique has been limited to pure metals without exploring metallic alloys. Leveraging the technique for the fabrication of shape memory alloy (SMA) nanostruc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 19 شماره
صفحات -
تاریخ انتشار 2014